Superfund hazardous waste site listed under thether: Ka

Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) as amended

WESTLAKE LANDFILL Bridgeton, Missouri

Conditions at listing (October 1989): Westlake Landfill covers 200 acres in Bridgeton, St. Louis County, Missouri, about 16 miles northwest of downtown St. Louis. The area is adjacent to prime agricultural land and is in the floodplain of the Missouri River. Between 1939 and the spring of 1987, limestone was quarried on the site. Starting in 1962, portions of the property were used for landfilling of solid and liquid industrial wastes, municipal refuse, and construction debris. In 1973, Cotter Corp. disposed of over 43,000 tons of uranium ore processing residues and soil in two areas covering a total of 16 acres of the Westlake Landfill, according to a Nuclear Regulatory Commission (NRC) report published in 1977.

In 1976, the Missouri Department of Natural Resources (MDNR) closed the unregulated landfill. Since then, MDNR has issued several permits for various portions of the 200-acre site. Currently, an operating sanitary landfill has a permitted area of 52 acres, and an operating demolition landfill has a permitted area of 22 acres.

Uranium was detected in on-site monitoring wells in tests conducted in 1985 and 1986 by a consultant to the owner of the landfill. An estimated 60 people obtain drinking water from private wells within 3 miles of the site.

Status (May 1990): EPA is monitoring investigations by NRC and Cotter Corp. of potential remedies for the site.

SUPERFUND RECORDS

- * * · · · · · · · · · · · · · · · · ·			the same of the last of the la	The second secon	مستنب المستحد المستحداد
	· · · · · · · · · · · · · · · · · · ·	•			
Facility name:H	estlake Lan	df111			
					1
Location:B	ridgeton. M	issouri			j
					1
EPA Region:V	ш	<u> </u>			
Person(s) in charge	of the facility:F	rancis Baldv	rin*		
	_1	3570 St. Cha	rles Rock Ros	d	
	B	ridgeton, M	ssouri	·	
		A.S	Date: _I	ebruary 8.	1989
General descriptor					
(For example: 2010) facility: contaminate	ri, aumace impour on soute :: major (coment, pile, conta concern: types of i	iner; types of hezardo ntormation needed for	, usque: sosuel st ma amperatement of	classification (control
-					1
The Westlak	e Landfill	has been an	active landfi	11 for over	two
decades. I	t is locate	d on the Mis	ssouri River F	lood plain	in
St. Louis C	ounty. Miss	ouri. In ac	dition to acc	enting sani	tary
					
refuse, it	has also ac	cepted waste	s from chemic	al producti	on
		•			
facilities	and unraniu	m processing	facility. I	ne to the o	bserved
release of	HI ATLUM		the ro	ure or majo	T_CONCETS
is the grou	ndwater rou	te. The aqu	ifer of conce	rn is used	AS A
drinking wa Scores: SM ==	ter supply	for some loc	eal residents. NS	Chemical	and
29.8 Spe = NS	35.02	0.00	NS	,	
,			NS=Not	scored	
Spc =NS	l dete from	water were	used to score	the elte	This is a
state lead		AUTEL ACIE	uaeu Lu acore	LUE BLIP.	
		=	55 4		

FIGURE 1 HRS COVER SHEET

*Francis Baldwin is the registered agent for the owner and operator of Westlake Landfill.

Response to Comments

(1) avres 6/6/90

Quality assured

august 2, 1987

p. William A Chestry &

			Ground	Naig	r Routs	:/ank Sine	t ·			
	Saling Factor			_	a Value Cher		Sigh- plier	Score	Max. Score	Ref. (Section)
0	Observed Release	9	0		(1	45	45	3.1
	If observed releas	_								
2	Route Characteris Depth to Aquifer		0	1 2	3		2		8	3.2
	Net Precipitation Permeability of t Unsaturated Zo	the	0	1 2 1 2	3		1		3	
	Physical State		0	1 2	3		1	r	3	
			Total Rout	e Cha	racteria	tics Score			15	
3	Containment		0	1 2	3		1		3	3.3
4	Waste Characteris Toxicity/Persiste Hazardous Wast Quantity	ence		3 6 1 2	9 12 1	_) ;	18 8	18	3.4
		1	Total Wast	e Cha	racteris	tics Score		26	26	
5	Targets Ground Water U: Distance to Near Well / Population Served	rest	0 0 12 24	1 4 (6) 30 30	3 8 3 20 2 35	60 60	3	9 16	9 40	3.5
6	. J	- Majorius F			gets Sc	ore		25	49	
<u>ت</u>		multiply [nultiply [2		_=				29250	57,330	
7	Divide line 6 by	y 57,330 au	nd multiply	y by 1	00		Sgw-	51.02		

FIGURE 2
GROUND WATER ROUTE WORK SHEET

9/2/89 WHG

			Surface Wat	er Route Wor	k Shee	l			
	Rating Factor			ed Value e One)		Multi- plier	Score	Max. Score	Roll (Sastion)
0	Observed Release		0	45		1	G	45	4.1
	If observed release If observed release	_				_			
2	Route Characterist Facility Slope and		ng 0 1 ©) 3		i	2	3	4.2
	Terrain 1-yr. 24-hr. Rainfi Distance to Near Water		016) 3) 3		1 2	2 4	3 8	
	Physical State		0 1 2	<u> </u>	<u></u>	1	3	3	
		To	otal Route Ch	aracteristics (Score		11	15	
3	Containment	· •	0 1 2	<u> </u>	ونسوبسوس	1	3	3	4.3
1	Waste Characterist Toxicity / Persiste Hazardous Waste Quantity	nce	0 3 6 0 1 2	9 12 15 (8 3 4 5 8	_	1 1	18	18	4.4
	•			·					
		To	otal Waste Ch	aracteristics :	core		26	26	•
6	Targeta Surface Water Us Distance to a Ses		0 1 0 1	5 3 2 3	, •	3 2	6	9	4.5
•	Population Serve to Water Intake Downstream	d/Distance	(a) 4 12 18 24 30	6 8 10 18 20 32 35 40		1	0	40	
			Total Ta	rgets Score			6	55	
0	tf line 1 is 45, r] * 4 * [* 3 * 4	_			5148	64,350	
Ŋ	Divide line 6 by	64,350 an	d multiply by	100		S _{sw} =	8.00		

FIGURE 7
SURFACE WATER ROUT!: WORK SHEET

Q AED 8/2/89 WAC 5

RTC 8/6/90

NOT SCORED

		A	tr Flou	ite Work	Sheet			,	
Rating Factor				d Value One)		Multi- plier	Score	Max. Score	Ref. (Section)
Observed Release		0		4.5	•	1		45	5.1
Date and Location:									
Sampling Protocol:									
tf line 1 's 0, the ff line 1 is 41 :						. '		-	
Waste Charac	7.3	0	1 2	3		. 1		3	5.2
Incompatibility Toxicity Hazardous Waste Quantity		. 0	1 2	3 4	5 6 7	8 1		9	•
			-				1	Τ	
	<u> </u>	Total Was	ste Ch	aracteri	stics Scor	•		20	
Targets Population Within 4-Mile Radius Distance to Sensit			9 12 24 27 1 2	? 15 18 ? 30 ! . 3		1 2		30 6	5.3
Environment Land Use		. 0	1 2	2 3		1		. 3	•
		,	•		٠.				•
	·	To	otal Ta	ugets S	core			39	
4 Multiply 1 x 2	× 3		-					35,100	
5 Divide line 4 by	35,100	and multi	ply by	100		8.			

FIGURE 9
AIR ROUTE WORK SHEET

QHED 8/2/89 WAG

FIGURE 10 WORKSHEET FOR COMPUTING S_M

QHED 8/2/81 WHC- 200

R/C 16/90

1, 11 1 .

Rating Factor		Assigned Value (Circle One)						Score	Max. Score	Ref. (Section)
Containment	1				3		1		3	7.1
2 Waste Characteristics										7.2
Direct Evidence	Ö		:	3			1		3	
Ignitability	. 0	1 :	2 :	3			1		3	
Reactivity	0	1 :	2 :	3			1		3	
Incompatibility	0	•	- '	3			1 '		3	
Hazardous Waste Quantity	0	1	2 ;	3 4	5	6 7 8	1		8	
	Total Was	ite C	harr	acte	ristic	s Score			20	
3 Targets	•					٠.		<u> </u>	·	7.3
Distance to Nearest Population	0	.1	2	3 4	5		1		5	
Distance to Nearest Building	0	1	2	3			1		3	
Distance to Sensitive Environment	0	1	2	3			1		3	
Land Use	0		_	3			1		3	
Population Within 2-Mile Radius	0			3 4	5		1		5	
Buildings Within 2-Mile Radius	0	1	2	3 4	5		1	•	.	
						•				
	To	tal T	arg	ets	Scor	•			24	
4 Multiply 1 x 2 x	3						,		1,440	

FIGURE 11
FIRE AND EXPLOSION WORK SHEET

ated 8/2/89 WK,

Not Scored

		Dire	ect Co	ntact Work Si	heet				
Rating Fact	or		ssigne (Circle	d Value (One)		Multi- plier	Score	Max. Score	Ref. (Section)
Coserved to	ncident	0		45		1		45	8.1
If line 1	is 45, proceed to 0, proceed to		}						
2 Accessibilit	У	0	1 2	3		1		3	8.2
3 Containmen	nt	0	15			1		15	8.3
Waste Char Toxicity	acteristics	0	1 2	з .		5		15	8.4
Targets Population 1-Mile Ra		. 0	1 2	3 4 5		4		20	8.5
Distance to Critical H		0	1 2	3		4		12	
					·		•		
•		To	tal Tan	gets Score			· 	32	1
6 If line 1	is 45, multiply is 0, multiply	11 × 4	x [] 	· · · · · · · · · · · · · · · · · · ·			21.600	
Divide line	6 by 21,600	and multip	ly by	100		S _{DC} -	•	-	

FIGURE 12 DIRECT CONTACT WORK SHEET

0 HED 8/2/89 WACT

DOCUMENTATION RECORDS FOR HAZARD RANKING SYSTEM

INSTRUCTIONS: As briefly as possible summarize the information you used to assign the score for each factor (e.g., "Waste quantity = 4,230 drums plus 800 cubic yards of sludges"). The source of information should be provided for each entry and should be a bibliographic-type reference.

FACILITY NAME:	Westlake Landfill
LOCATION:	13570 St. Charles Rock Road, Bridgeton
	St. Louis County, Missouri
DATE SCORED:	July 17, 1989 (Revised)
PERSON SCORING:	John Madras

PRIMARY SOURCE(S) OF INFORMATION (e.g., EPA region, state, FIT, etc.):

Missouri Department of Natural Resources (MDNR) Files Nuclear Regulatory Commission reports USGS Documents

FACTORS NOT SCORED DUE TO INSUFFICIENT INFORMATION:

Air Route Direct Contact Fire & Explosion

COMMENTS OR QUALIFICATIONS:

QHED 8/1/89 WAG

GROUND WATER ROUTE

1. OBSERVED RELEASE

Contaminants detected (5 maximum):

Uranium in monitoring wells S-53, I-56, I-58, I-59, S-60, I-62, I-67, S-75, D-81, S-82, D-83, S-84, S-88, D-92, and D-93 (Reference 10, Appendix E)

Groundwater flow is generally to the northwest (Reference 10 page III-6 to 7) Well I-73 is located to the east of the facility and was chosen to represent background conditions. However it contains low level radiation which most likely originated from the site.

Further background wells were identified in the Burns & McDonnell hydrogeologic investigation report as wells D-89, 8-53, 8-52, 8-51, D-90, 8-80, I-50 and D-91. (Reference 10, page III-22 to 23) Contaminants were absent from all of these wells except 8-80, I-73 and 8-53. A review of Reference 10 indicated that wells 8-51, 8-52 and 8-53 may not represent background all of the time, and that more water level readings were needed to determine if wells D-91 and I-50 (which are adjacent to well 8-80) are outside of the area of influence of the landfill. (Reference 17)

The detection limit was 0.4 pCi/l for uranium (Reference 16). The Oak Ridge Associated Universities participates in rigorous quality assurance programs.

Score = 45 for Observed Release (Reference 5, page 9)

Rationale for attributing the contaminants to the facility:

Uranium ore processing residues are known to have been deposited in the landfill. (Reference 15, page 4) Groundwater monitoring in and around the landfill has established that radioactive material has entered the groundwater and that the contamination has reached perimeter wells. (Reference 1, page 11) No other source of the contaminant is located in the vicinity of the landfill. The contaminant was not detected in background wells except as noted above.

2

WESTLAKE QUARRY LANDFILL

OBSERVED RELEASE DATA

Compound	Release/ Background	Well Number	Well Depth	Observed Concentration
			(feet)	(PCi/1)
Uranium ¹	Release	8-5 3	23.7	22.0 ²
	Release	I-56	61.1	8.9
	Release	I-58	60.0	13.0
	Release	S-6 0	21.0	19.0
	Release	I-67	35.4	7.4
	Release	. S-7 5	26.0	<u>16.0</u>
	Release	D-81	61.5	4.9
	Release	S-82	26.5	13.0
	Release	S-84	31.5	9.0
	Release	D-92	143.6	<u>17.0</u>
	Release	D-93	119.2	6.0
	Background	1-73	50.0	3.0

Underlined values represent significant observed releases of uranium.

2A

Sampling for uranium was conducted from May 7, 1986 through May 8, 1986. (Reference 10, pager II-7)

² The detection limit for uramium was 0.4 pCi/l. (Reference 16)

ROUTE CHARACTERISTICS

Depth to Aquifer of Concern

Name/description of aquifer(s) of concern:

The aquifer of concern is the Missouri River alluvium which consists of clay, silt and gravel. The alluvium includes thick deposits of glacial outwash and some river terrace deposits, and fills the deeply eroded bedrock channel formed by the Missouri River (Reference 10, page I-2). general, the alluvium becomes coarser-grained with depth. (Reference 10, page I-3) The deep Missouri River alluvium, which is under about ten feet of more recent alluvium, acts as a single aguifer of very high permeability. This aquifer is relatively homogeneous in a downstream direction and decreases in permeability near the valley walls. A profile of the aquifer is presented in Reference 10 (page I-6). The depth of the aquifer increases from edge of the buried valley wall toward the Missouri River. It is 28 feet deep at well D-89 which is near the buried valley wall and increases to 110 feet at the riverward well D-83. Well logs show no discontinuities in the alluvial aquifer. (Reference 18) The groundwater of this aquifer flows generally to the northwest. (Reference 10, page III-6 to 7) The base of the limestone aquifer is formed by the relatively impermeable Warsaw shale. The Warsaw shale acts as an aquiclude. (Reference 1, page 6)

Depth(s) from the ground surface to the highest seasonal level of the saturated zone [water table(s)] of the aquifer of concern:

Depth from the ground surface to the lowest point of waste disposal/storage:

Q HED 8/2/89 WAC-

Net Precipitation

Mean annual or seasonal precipitation (list months for seasonal):

Mean annual lake or seasonal evaporation (list months for seasonal):

Net precipitation (subtract the above figures):

Permeability of Unsaturated Zone

Soil type in unsaturated zone:

Permeability associated with soil type:

Physical State

Physical state of substances at time of disposal (or at present time for generated gases):

QAH 8/2/89

3. CONTAINMENT

Containment

Method(s) of waste or leachate containment evaluated:

Method with highest score:

4. WASTE CHARACTERISTICS

Toxicity and Persistence

Compound(s) evaluated:

Uranium. Uranium is known to have been deposited at this site.

Compound with highest score:

Uranium.

Score = 18 For Toxicity/Persistence (Reference 5, page 18;
Reference 6, page 3445)

Hazardous Waste Quantity

Total quantity of hazardous substances at the facility, excluding those with a containment score of 0 (Give a reasonable estimate even if quantity is above maximum):

The original amount of radioactive material was 8700 tons of barium sulfate sludge containing 7 tons of uranium ore processing waste. This was mixed with 39,000 tons of soil before being deposited in the landfill. (Reference 15, page 4) The material had been stored by Cotter Corporation under Nuclear Regulatory Commission license at 9200 Latty Avenue, Hazelwood, Missouri. This waste was originally reported to have been disposed at St. Louis County sanitary landfill area No. 1 (Reference 15, page 2) A subsequent NRC investigation clarified that a total of over 43,000 tons of waste were removed from the Latty Avenue site and that htis material was dumped at the Westlake Landfill. (Reference 15, page 3)

Score = 8 for Hazardous Waste Quantity (Reference 5, page 19)

Basis of estimating and/or computing waste quantity:

The amount of radioactive material was known at the time of disposal, as described above. (Reference 15, page 4)

affl 8/2/8/

TARGETS

Ground Water Use

Use(s) of aquifer(s) of concern within a 3-mile radius of the facility:

There are at least fifteen known private drinking water wells within three miles of the facility. Groundwater is being used as a drinking water source, for other domestic purposes and for irrigation. (Reference 1, page 6; Reference 7, map; Reference 12; Reference 13; Reference 20)

No municipal water from alternative unthreatened sources is presently available to these users. (Reference 14)

Score = 3 for Ground Water Use (Reference 5, page 24)

Distance to Nearest Well

Location of nearest well drawing from aquifer of concern or occupied building not served by a public water supply:

The nearest well is about 2500 feet from the facility. (Reference 20) Seventeen additional wells are within three miles of the facility. (Reference 7, map; Reference 12; Reference 13)

Distance to above well or building:

The nearest well is about 2500 feet from the facility. (Reference 20, map; Reference 9, map showing distance)

Score = 3 for Distance to Nearest Well (Reference 5, page 26)

Population Served by Groundwater Wells Within a 3-Mile Radius

Identified water-supply well(s) drawing from aquifer(s) of concern within a 3-mile radius and populations served by each:

At least fifteen wells provide drinking water. (Reference 12 identifies eleven homes and two businesses; Reference 7 shows two additional wells not documented in Reference 12) The human population estimated to be served is at least 57. (Homes and businesses identified by References 7 and 12 times 3.8)

PAEG 8/2/89 WAC Computation of land area irrigated by supply well(s) drawing from aquifer(s) of concern within a 3-mile radius, and conversion to population (1.5 people per acre):

At least 480 acres of cropland (rowcrops and produce) are irrigated from wells within the three mile radius. (Reference 13) The population equivalent is 720 people.

Total population served by groundwater within a 3-mile radius:

The population served by groundwater is at least 777.

Score = 2 for Population Served (Reference 5, page 27)

Score = 16 for Distance to Nearest Well/Population Served (Reference 5, page 25)

QHED 8/1/89 WAC

7

SURFACE WATER ROUTE

1. OBSERVED RELEASE

Contaminants detected in surface water at the facility or downhill from it (5 maximum):

None.

Score = 0 for Observed Release (Reference 5, page 29)

Rationale for attributing the contaminants to the facility:

Surface water was not sampled.

**

ROUTE CHARACTERISTICS

Facility Slope and Intervening Terrain

Average slope of facility in percent:

Radioactive gases have been detected in the atmosphere above the landfill. (Reference 3, page 17) Buried deposits extend in excess of 20 feet in depth from the highest point of detection. They are also present on the surface of the sideslope of the landfill where they are available for migration by overland flow. (Reference 3, page 42) The slope from the top of the landfill to the location where the subsurface radioactive deposit intersects the sideslope is about 20%. The top of the landfill slopes less than 1 percent. (Reference 10, page I-6)

Name/description of nearest downslope surface water:

An unnamed, permanently flowing tributary to the Missouri River drains the site. The tributary is located about 1000 feet west of the landfill. (Reference 9)

Average slope of terrain between facility and above-cited surface water body in percent:

The landfill slopes directly to drainage ditches, which discharge to the tributary. Average slope between lowest point of documented contamination on the landfill sideslope (elevation 460 feet) and the tributary is about 4 percent. The elevation of the surface water was determined to be 440 feet. (Reference 3, page 42; Reference 9; Reference 10, page I-6)

Score = 2 for Facility Slope and Intervening Terrain (Reference 5, page
31)

6/1

Is the facility located either totally or partially in surface water?

No. (Reference 9)

Is the facility completely surrounded by areas of higher elevation?

No. (Reference 9)

1-Year 24-Hour Rainfall in Inches

2.9" (Refeence 5, page 33)

Score = 2 for 1-Year 24-Hour Rainfall (Reference 5, page 32)

Distance to Nearest Downslope Surface Water

The landfill is about 1000 feet from the tributary and about 1.25 miles from the Missouri River. (Reference 9)

Score = 2 for Distance to Nearest Downslope Surface Water (Reference 5, page 32)

Physical State of Waste

Radioactive gases have been detected above the landfill surface. (Reference 3, page 17) The buried radioactive material intersects the surface of the ladfill sideslope. (Reference 3, page 42) Radon is water soluble and is available to wash into surface waters from the landfill. (Reference 1, page 10)

Score = 3 for Physical State of Waste (Reference 5, page 16)

3. CONTAINMENT

Containment

Method(s) of waste or leachate containment evaluated:

Some of the radioactive contaminated soil is at or near the surface of the landfill. (Reference 1, page 5)

Method with highest score:

Landfill not covered and no diversion system present.

Score = 3 for Containment (Reference 5, page 35)

2 AEG 8/2/69 9 ACT

4. WASTE CHARACTERISTICS

Toxicity and Persistence

Compound(s) evaluated

Uranium. Uranium is known to have been deposited at this site, and has been detected on the surface of the sideslope of the landfill (Reference 3, page 42).

Compound with highest score:

Uranium.

Score = 18 for Toxicity/Persistence (Reference 5, page 18;
Reference 6, page 3445)

Hazardous Waste Quantity

Total quantity of hazardous substances at the facility, excluding those with a containment score of 0 (Give a reasonable estimate even if quantity is above maximum):

The original amount of radioactive material was 8700 tons of barium sulfate sludge containing 7 tons of uranium ore processing waste. This was mixed with 39,000 tons of soil before being deposited in the landfill. (Reference 15, page 4) The material had been stored by Cotter Corporation under Nuclear Regulatory Commission license at 9200 Latty Avenue, Hazelwood, Missouri. This waste was originally reported to have been disposed at St. Louis County sanitary landfill area No. 1 (Reference 15, page 2) A subsequent NRC investigation clarified that a total of over 43,000 tons of waste were removed from the Latty Avenue site and that htis material was dumped at the Westlake Landfill. (Reference 15, page 3)

Score = 8 for Hazardous Waste Quantity (Reference 5, page 19)

Basis of estimating and/or computing waste quantity:

The amount of radioactive material was known at the time of disposal, as described above. (Reference 15, page 4)

5. TARGETS

Surface Water Use

Use(s) of surface water within 3 miles downstream of the hazardous substance:

The Missouri River has state-designated beneficial uses of irrigation, livestock and wildlife watering, protection of aquatic life, commercial fishing, boating, and drinking water, and industrial water supplies. (Reference 4, page 57) No beneficial uses are specifically designated for

10

the permanently flowing tributary of the Missouri River that drains the landfill area. (Reference 4) No water supply intake is located within 3 miles downstream of the hazardous substance.

Score = 2 for Surface Water Use (Reference 5, page 34)

Is there tidal influence?

No. (Reference 9)

Distance to a Sensitive Environment

Distance to 5-acre (minimum) coastal wetland, if 2 miles or less:

NA (Reference 9)

Distance to 5-acre (minimum) fresh-water wetland, if 1 mile or less:

Areas of freshwater wetlands may be present within one mile of the facility. (Reference 9)

Distance to critical habitat of an endangered species or national wildlife refuge, if 1 mile or less:

NA

Score = 0 for Distance to a Sensitive Environment (Reference 5, page 37)

Population Served by Surface Water

Location(s) of water-supply intake(s) within 3 miles (free-flowing bodies) or 1 mile (static water bodies) downstream of the hazardous substance and population served by each intake:

None.

Score = 0 for Population Served/Distance to Water Intake Downstream (Reference 5, page 38)

Computation of land area irrigated by above-cited intake(s) and conversion to population (1.5 people per acre):

There is no known irrigation from the permanently flowing stream which drains the landfill area.

Total population served:

NA

Name/description of nearest of above water bodies:

NA

Distance to above-cited intakes, measured in stream miles.

NA

AAFG 8/2/87 WKT

AIR ROUTE

Not Scored

1.	OBSERVED	PRIRASE

Contaminants detected:

Date and location of detection of contaminants

Methods used to detect the contaminants:

Rationale for attributing the contaminants to the site:

**

2. WASTE CHARACTERISTICS

Reactivity and Incompatibility

Most reactive compound:

Most incompatible pair of compounds:

2Acd 8/2/89 WKT

Toxici	てい	,

Most toxic compound:

Hazardous Waste Quantity

Total quantity of hazardous waste:

Basis of estimating and/or computing waste quantity:

3. TARGETS

Population Within 4-Mile Radius

Circle radius used, give population, and indicate how determined:

0 to 4 mi

0 to 1 mi 0 to 1/2 mi

0 to 1/4 mi

Distance to a Sensitive Environment

Distance to 5-acre (minimum) coastal wetland, if 2 miles or less:

Distance to 5-acre (minimum) fresh-water wetland, if 1 mile or less:

Distance to critical habitat of an endangered species, if 1 mile or less:

Land Use

Distance to commercial/industrial area, if 1 mile or less:

Distance to national or state park, forest, or wildlife reserve, if 2 miles or less:

Distance to residential area, if 2 miles or less:

Distance to agricultural land in production within past 5 years, if 1 mile or less:

Distance to prime agricultural land in production within past 5 years, if 2 miles or less:

Is a historic or landmark site (National Register or Historic Places and National Natural Landmarks) within the view of the site?

FIRE AND EXPLOSION

Not Scored

A score for the fire and explosion hazard mode has not been computed. Neither a state or local fire marshal has certified that the facility presents a significant fire or explosion threat to the public or to sensitive environments. Field observations have not demonstrated a fire or explosion threat.

1. CONTAINMENT

Hazardous substances present:

Type of containment, if applicable:

2. WASTE CHARACTERISTICS

Direct Evidence

Type of instrument and measurements:

Ignitability '

Compound used:

Reactivity

Most reactive compound:

Incompatibility

Most incompatible pair of compounds:

QHCd 8/2/89 WHG

DIRECT CONTACT

Not Scored

1.	OBSKRVKD	TRICTORNE
		TUCTORI

Date, location, and pertinent details of incident:

2. ACCESSIBILITY

Describe type of barrier(s)

3. CONTAINMENT

Type of containment, if applicable:

4. WASTE CHARACTERISTICS

Toxicity

Compounds evaluated:

Compound with highest score:

QHED 8/2/89 WK7

REFERENCES

If the entire reference is not available for public review in the EPA regional files on this site, indicate where the reference may be found:

Reference Number	Description of the Reference
1.	U. S. Nuclear Regulatory Commission, Radioactive Material in the West Lake Landfill, Summary Report, NUREG-1308, Rev.1, June 1988.
2.	U.S. Department of Agriculture, Soil Conservation Service, Soil Survey of St. Louis County and St, Louis City, Missouri, May 1982.
3.	Radiation Management Corporation, <u>Radiological Survey of the West Lake Landfill, St. Louis County, Missouri, NUREG/CR-2722, U.S. Nuclear Regulatory Commission, May 1982.</u>
4.	Missouri Code of State Regulations, Rules of the Clean Water Commission, Chapter 7, Water Quality Standards, 10 CSR 20-7.031.
5.	U.S. Environmental Protection Agency, <u>Uncontrolled Hazardous Waste</u> <u>Site Ranking System - A User's Manual</u> , 1984.
6.	Sax, N. Irving and Lewis, J., Sr., <u>Dangerous Properties of</u> <u>Industrial Materials</u> , Seventh Edition. Van Nostrand Reinhold, New York. 1989.
7.	Scott A. Meierotto letter to West Lake Quarry with map attachment, dated January 14, 1982.
8.	Roy D. Blunt, Missouri Secretary of State, Official Manual State of Missouri 1987-1988.
9.	U.S. Geological Survey, St. Charles, Missouri; 7.5 minute quadrangle map, revised 1974.
10.	Burns & McDonnell, Hydrogeologic Investigation West Lake Landfill Primary Phase Report, October 1986.
11.	EPA Forms 8900-1, Notification of Hazardous Waste Site, filed by various waste haulers who deposited solid waste in Westlake Landfill.
12.	Mike Struckhoff, Memo to John Madras, dated June 30, 1989.
13.	John Madras, Memo to Westlake Quarry Landfill File, dated July 14, 1989.
14.	Record of phone conversation between Dave Pruitt, St. Louis County Water Co., and John Madras, dated June 6, 1989.

18

QHED 6/2/89 WAC7

REFERENCES (Continued)

Reference Number	Description of the Reference
15.	U. S. Nuclear Regulatory Commission, <u>IE Investigation Report No.</u> 76-01, dated January 5, 1977.
16.	Record of phone conversation between Clayton Weaver, Oak Ridge Associated Universities and John Hadras, dated July 18, 1989.
17.	Janese Neher, Memo to Miles H. Stotts, dated June 16, 1989.
18.	Division of Geology and Land Survey, Well Logs of the Missouri River Floodplain of St. Louis County north of Route 115.
19.	Record of phone conversation between John Meadows and Lynn Hartman, and John Madras dated July 26, 1989.
20.	Record of phone conversation between Mike Struckhoff and John Madras, dated July 26, 1989.
21.	Map, St. Louis County Water Company, indicating the extent of the water lines.

RTC 18/16/90 ALED 8/2/69 AMCT

National Priorities List

Superfund hazardous waste site listed under the .: Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) as amended in 1986

WESTLAKE LANDFILL Bridgeton, Missouri

Conditions at listing (October 1989): Westlake Landfill covers 200 acres in Bridgeton, St. Louis County, Missouri, about 16 miles northwest of downtown St. Louis. The area is adjacent to prime agricultural land and is in the floodplain of the Missouri River. Between 1939 and the spring of 1987, limestone was quarried on the site. Starting in 1962, portions of the property were used for landfilling of solid and liquid industrial wastes, municipal refuse, and construction debris. In 1973, Cotter Corp. disposed of over 43,000 tons of uranium ore processing residues and soil in two areas covering a total of 16 acres of the Westlake Landfill, according to a Nuclear Regulatory Commission (NRC) report published in 1977.

In 1976, the Missouri Department of Natural Resources (MDNR) closed the unregulated landfill. Since then, MDNR has issued several permits for various portions of the 200-acre site. Currently, an operating sanitary landfill has a permitted area of 52 acres, and an operating demolition landfill has a permitted area of 22 acres.

Uranium was detected in on-site monitoring wells in tests conducted in 1985 and 1986 by a consultant to the owner of the landfill. An estimated 60 people obtain drinking water from private wells within 3 miles of the site.

<u>Status (May 1990)</u>: EPA is monitoring investigations by NRC and Cotter Corp. of potential remedies for the site.

NPL-U10-2-15

National Priorities List

Superfund hazardous waste site listed under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) as amended in 1986

WESTLAKE LANDFILL Bridgeton, Missouri

Westlake Landfill covers 200 acres in Bridgeton, St. Louis County, Missouri, about 16 miles northwest of downtown St. Louis. The area is adjacent to prime agricultural land and is in the floodplain of the Missouri River. Between 1939 and the spring of 1987, limestone was quarried on the site. Starting in 1962, portions of the property were used for landfilling of solid and liquid industrial wastes, municipal refuse, and construction debris. In 1973, Cotter Corp. disposed of over 43,000 tons of uranium ore processing residues and soil in two areas covering a total of 16 acres of the Westlake Landfill, according to a Nuclear Regulatory Commission (NRC) report published in 1977.

In 1976, the Missouri Department of Natural Resources (MDNR) closed the unregulated landfill. Since then, MDNR has issued several permits for various portions of the 200-acre site. Currently, an operating sanitary landfill has a permitted area of 52 areas, and an operating demolition landfill has a permitted area of 22 acres.

Uranium was detected in on-site monitoring wells in tests conducted in 1985 and 1986 by a consultant to the owner of the landfill. An estimated 60 people obtain drinking water from private wells within 3 miles of the site.

WESTLAKE LANDFILL

Narrative Summary

The Westlake Landfill is located on the floodplain of the Missouri River near the City of Bridgeton, in St. Louis County, Missouri. The Bridgeton community has a population of about 18,000 people and is located adjacent to the site. The City of St. Charles, Missouri is also located in the site's vicinity. Scattered residences are located throughout the area. The landfill is located near prime agricultural land. Commercial and industrial sites are adjacent and near the landfill as well. The geology of the area is alluvial, with Missouri River deposits overlying limestone. Seven tons of uranium ore processing residues are known to have been deposited in the landfill. The extent of contamination by uranium has been well characterized, and consists of two areas within the landfill. Radioactivity has also been detected in the groundwater. The uranium is known to have been owned by Cotter Corporation at the time it was deposited. Pursuant to the Missouri Hazardous Waste Management Law, the site is listed on the Registry of Confirmed Abandoned and Uncontrolled Hazardous Waste Sites in Missouri.

Quality assured

2 1989

Dor. William A Chantry of

	ttaablala 1	r 16:11
Facility name: _	Westlake '	LandIIII
Location:	Bridgeton	Missouri
EPA Region:	VII	
Person(s) in ch	arge of the facility:	Francis Baldwin*
		13570 St. Charles Rock Road
		Bridgeton, Missouri
	wsr: <u>John M.</u>	adras Date: February 8, 1989
(For example:	landfill, surface im	poundment, pile, container; types of hazardous substances; location of the ajor concern; types of information needed for rating; agency action, etc.)
The West	lake Landfi	ll has been an active landfill for over two
decades.	It is loc	ated on the Missouri River Flood plain in
St. Loui	s County. M	issouri. In addition to accepting sanitary
refuse.	it has also	accepted wastes from chemical production
faciliți	es and unra	nium processing facility. Due to the observed
release	of uranium	the route of major concern
•		route. The aquifer of concern is used as a
drinking Scores: S _M =	water supp 29 .85^{(S}gw = 5 1	ly for some local residents. Chemical and .02 8.00 NS
S _{FE} :		NS=Not scored
Spc radiolog	⊒NS ical data f	rom water were used to score the site. This is a
state le		The state of the s

FIGURE 1 HRS COVER SHEET

*Francis Baldwin is the registered agent for the owner and operator of Westlake Landfill.

Quality assured august 2, 1989 Dr. William & Charley \$ 2

			Groun	d Was	r Ropu	a //ork S	1991	: : :			
	Rating Factor		۵.		u Valu One)	ð		Mulli- plier	Scora	Max. Score	(Section)
	Observed Release)	0		E	5	******	1	45	45	3.1
	If observed release is given a score of 45, proceed to line 4. If observed release is given a score of 0, proceed to line 2.										
2											3.2
	Depth to Aquifer Concern	r of	O	1 2	3			2		8	
	Net Precipitation Permeability of t		0	1 2	3 3			1		3 3	
	Unsaturated Zo Physical State	ne	0	1 2	3			1		3	
		Т	ctal Rou	te Cha	racteri	stics Scor	re			15	
回	Containment	<u> </u>	0	1 2	3	"	 .	1		3	3.3
4	Waste Characteris Toxicity/Persiste Hazardous Wast Quantity	ence	0	3 6 1 2	9 12 3 4	15 (3) 5 8 7	3	1	18 8	18 8	3.4
		т	otal Was	te Cha	racteri	stics Sco	re		26	26	
5	Targets Ground Water U Distance to Near Well/Population Served	rest	0 0 12 24	1 4 1 30 30	2 ③ 6 8 8 20 2 35	10 40		3	9 16	9 40	3.5
			Tot	al Tar	gets Sc	ore	······································		25	49	
<u></u>		multiply [1 nultiply [2]	x 4 x 3	x [4	_	<u> </u>			29250	57,330	
7	Divide line 6 by	y 57,330 an	d multip	ly by 1	00		5	gw =	51.02		

FIGURE 2
GROUND WATER ROUTE WORK SHEET

Q AEG 8/2/89 WHG

Surface Water Route Work Sheet									
	Rating Factor		Multi- plier	Scere	Max. Score	Roll (Saption)			
<u></u>	Observed Release	©	45		1	. 0	45	4.1	
	If observed release is given a value of 45, proceed to line 4. If observed release is given a value of 0, proceed to line 2.								
2	Route Characteristics Facility Slope and Interventier	ening 0 1 2	3		1	2	3	4.2	
	1-yr. 24-hr. Rainfall Distance to Nearest Suri Water	o 1 2 face 0 1 2	3	•	1 2	2 4	3 8		
	Physical State	0 1 2	<u> </u>	·	1	3	3		
		Total Route Char	racteristics S	core		11	15		
3	Containment	0 1 2 (3		1	3	3	4.3	
4	Waste Characteristics Toxicity/Persistence Hazardous Waste Quantity	0 3 8 0 1 2	9 12 15 (8) 3 4 5 6	7 (3)	1	18 8	18 8	4.4	
				84 (20.1.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2			: 		
		Total Waste Cha	racteristics (ore		26	26		
5	Targets Surface Water Use Distance to a Sensitive Environment	0 1 0 1	6 3 2 3		3 2	6 0	9	4.5	
	Population Served/Distar to Water Intake Downstream	12 16 1	6 8 10 18 20 32 35 40		1		40	:	
		Total Targ	ets Score			6	55		
8	If line 1 is 45, multiply If line 1 is 0, multiply					5148	64,350		
7	Divide line 6 by 64,350	and multiply by 10	00		S _{sw} =	8.00			

FIGURE 7
SURFACE WATER ROUTI: WORK SHEET

Q A Ed 8/2/89 WAC 5

	i		Air R	oute Work	Sheet				
R	lating Factor			ned Value cle One)		Multi- plier	Score	Max. Score	Ref. (Section)
1 0	bserved Release		0	45		1		45	5.1
Di	ate and Location:								
Si	ampling Protocol:								
		ne S _a = 0. E han proceed	_						
	Vaste Charac	13	0 1	2 3		ï		3	5.2
	Incompatibility Toxicity Hazardous Waste		0 1 0 1	2 3 2 3 4 5	5 8 7 8	3		9 8	٠
	Quantity								
		Tot	al Waste (Characterist	ics Score	_		20	
	argets Population Within			12 15 18		1		30	5.3
1	4-Mile Radius Distance to Sens Environment	itive	∫ 21 24 0 1	27 30 2 3		2		6	
1	Land Use		0 1	2 3		1		3	
			Total	Targets Sc	ore		T	39	7
4 ,	Aultiply 1 × [2 x 3						35,100	
⑤ ₀	Divide line 4 b	y 35,100 and	multiply	by 100		Sa	-	1	

FIGURE 9 AIR ROUTE WORK SHEET

QAEd 8/2/69 WAC,

	s	s ²
Groundwater Route Score (Sgw)	51.02	2603.04
Surface Water Route Score (S _{SW})	8.00	64.00
Air Route Score (Sa)		
$s_{gw}^2 + s_{sw}^2 + s_a^2$		26 57.04
$\sqrt{s_{gw}^2 + s_{sw}^2 + s_a^2}$		51.64
$\sqrt{s_{gw}^2 + s_{sw}^2 + s_a^2} / 1.73^\circ = s_M =$		29.85

FIGURE 10 WORKSHEET FOR COMPUTING $s_{\mathbf{M}}$

QHEG 8/2/81 WHC-

	Fire a	ind	Exp	los	ion	Wo	rk S	heat				
Rating Factor Assigned Value Multiplier Score Max. Ref. (Circle One) Score Score (Section)												
1 Containment	1					3			1		3	7.1
2 Waste Characteristics												7.2
Direct Evidence	0			3					1		3	
Ignitability	0	1	2	3					1		3	
Reactivity	=	1	_	_					1		3	
Incompatibility Hazardous Waste Quantity	0	1	2	3	4	5	6	7 8	1		3 8	
	Total Wa	ste ·	Cha	ırac	teri	stic	s Sc	ore			20	-
3 Targets	=		_	_		_			_		_	7.3
Distance to Nearest	0	1	2	3	4	5			1		5	
Population Distance to Nearest	0	1	2	4					1		3	
Building	Ū	'	~	J					,		3	
Distance to Sensitive	. 0	1	2	3					1		3	
Environment												
Land Use		1				_			1		3	
Population Within 2-Mile Radius	0	1	2	3	4	5			1		5	
Buildings Within 2-Mile Radius	0	1	2	3	4	5	•		1	•	5	
								•				
	•											
·	To	tal	Tar	get	3 S	cor	e				24	
4 Multiply 1 x 2 x	3										1,440	
5 Divide line 4 by 1,4	40 and multip	ly b	y 1	00					SFE	- N	S	

FIGURE 11
FIRE AND EXPLOSION WORK SHEET

ahed 8/2/89 WHG

	Direct Contact Work Sheet											
	Rating Factor			gne rcle			9		Multi- pller	Score	Max. Score	Ref. (Section)
<u></u>	Observed Incident	0				4	5		1		45	8.1
	If line 1 is 45, proceed to 11 line 1 is 0, proceed to											
2	Accessibility	0	1	2	3				1		3	8.2
3	Containment	o		15					1		15	8.3
回	Waste Characteristics Toxicity	0	1	2	3				5_		15	8.4
3	Targets Population Within a 1-Mile Radius	0	1	2	3	4	5	٠	4	-	20	8.5
	Distance to a Critical Habitat	0	1	2	3			:	4		12	
									•			
							•					
		•										
											•	
	•											
												,
		To	al	Tan	get	s S	core			· .	32	
<u>[6]</u>	6 If line 1 is 45, multiply 1 x 4 x 5 If tine 1 is 0, multiply 2 x 3 x 4 x 5 21,600											
7	Divide line 6 by 21,600 and multiply by 100 SDC =											

FIGURE 12
DIRECT CONTACT WORK SHEET

QHEOL 8/2/89 WHCT

DOCUMENTATION RECORDS FOR HAZARD RANKING SYSTEM

INSTRUCTIONS: As briefly as possible summarize the information you used to assign the score for each factor (e.g., "Waste quantity = 4,230 drums plus 800 cubic yards of sludges"). The source of information should be provided for each entry and should be a bibliographic-type reference.

FACILITY NAME:	Westlake Landfill
LOCATION:	13570 St. Charles Rock Road, Bridgeton
	St. Louis County, Missouri
DATE SCORED:	July 17, 1989 (Revised)
PERSON SCORING:	John Madras

PRIMARY SOURCE(S) OF INFORMATION (e.g., EPA region, state, FIT, etc.):

Missouri Department of Natural Resources (MDNR) Files Nuclear Regulatory Commission reports USGS Documents

FACTORS NOT SCORED DUE TO INSUFFICIENT INFORMATION:

Air Route Direct Contact Fire & Explosion

COMMENTS OR QUALIFICATIONS:

QHECT 8/2/89 WACT

GROUND WATER ROUTE

OBSERVED RELEASE

Contaminants detected (5 maximum):

Uranium in monitoring wells S-53, I-56, I-58, I-59, S-60, I-62, I-67, S-75, D-81, S-82, D-83, S-84, S-88, D-92, and D-93 (Reference 10, Appendix E)

Groundwater flow is generally to the northwest (Reference 10 page III-6 to 7) Well I-73 is located to the east of the facility and was chosen to represent background conditions. However it contains low level radiation which most likely originated from the site.

Further background wells were identified in the Burns & McDonnell hydrogeologic investigation report as wells D-89, S-53, S-52, S-51, D-90, S-80, I-50 and D-91. (Reference 10, page III-22 to 23) Contaminants were absent from all of these wells except S-80, I-73 and S-53. A review of Reference 10 indicated that wells S-51, S-52 and S-53 may not represent background all of the time, and that more water level readings were needed to determine if wells D-91 and I-50 (which are adjacent to well S-80) are outside of the area of influence of the landfill. (Reference 17)

The detection limit was 0.4 pCi/l for uranium (Reference 16). The Oak Ridge Associated Universities participates in rigorous quality assurance programs.

Score = 45 for Observed Release (Reference 5, page 9)

Rationale for attributing the contaminants to the facility:

Uranium ore processing residues are known to have been deposited in the landfill. (Reference 15, page 4) Groundwater monitoring in and around the landfill has established that radioactive material has entered the groundwater and that the contamination has reached perimeter wells. (Reference 1, page 11) No other source of the contaminant is located in the vicinity of the landfill. The contaminant was not detected in background wells except as noted above.


2

WESTLAKE QUARRY LANDFILL

OBSERVED RELEASE DATA

Compound	Release/ Background	Well Number	Well Depth (feet)	Observed Concentration (PCi/l)
Uranium¹	Release Release	S-53 I-56	23.7 61.1	22.0 ² 8.9
	Release	I-58	60.0	13.0
	Release	S-60	21.0	19.0
	Release	1-67	35.4	7.4
	Release	S-75	26.0	16.0
	Release	D-81	61.5	4.9
	Release	S-82	26.5	13.0
	Release	S-84	31.5	9.0
	Release	D-92	143.6	17.0
	Release	D-93	119.2	6.0
٠,	Background	I-73	50.0	3.0

Underlined values represent significant observed releases of uranium.

Sampling for uranium was conducted from May 7, 1986 through May 8, 1986. (Reference 10, pager II-7)

2A

² The detection limit for uramium was 0.4 pCi/l. (Reference 16)

5419 1240

.

·

2. ROUTE CHARACTERISTICS

Depth to Aquifer of Concern

Name/description of aquifer(s) of concern:

The aguifer of concern is the Missouri River alluvium which consists of clay, silt and gravel. The alluvium includes thick deposits of glacial outwash and some river terrace deposits, and fills the deeply eroded bedrock channel formed by the Missouri River (Reference 10, page I-2). In general, the alluvium becomes coarser-grained with depth. (Reference 10, page I-3) The deep Missouri River alluvium, which is under about ten feet of more recent alluvium, acts as a single aquifer of very high permeability. This aquifer is relatively homogeneous in a downstream direction and decreases in permeability near the valley walls. A profile of the aquifer is presented in Reference 10 (page I-6). The depth of the aquifer increases from edge of the buried valley wall toward the Missouri River. It is 28 feet deep at well D-89 which is near the buried valley wall and increases to 110 feet at the riverward well D-83. Well logs show no discontinuities in the alluvial aquifer. (Reference 18) The groundwater of this aquifer flows generally to the northwest. (Reference 10, page III-6 to 7) The base of the limestone aquifer is formed by the relatively impermeable Warsaw shale. The Warsaw shale acts as an aquiclude. (Reference 1, page 6)

Depth(s) from the ground surface to the highest seasonal level of the saturated zone [water table(s)] of the aquifer of concern:

Depth from the ground surface to the lowest point of waste disposal/storage:

3

4.4	-		
Net	Pre	ומוס	tation

Mean annual or seasonal precipitation (list months for seasonal):

Mean annual lake or seasonal evaporation (list months for seasonal):

Net precipitation (subtract the above figures):

Permeability of Unsaturated Zone

Soil type in unsaturated zone:

Permeability associated with soil type:

Physical State

Physical state of substances at time of disposal (or at present time for generated gases):

3 April 8/8/8/8/

3. CONTAINMENT

Containment

Method(s) of waste or leachate containment evaluated:

Method with highest score:

4. WASTE CHARACTERISTICS

Toxicity and Persistence

Compound(s) evaluated:

Uranium. Uranium is known to have been deposited at this site.

Compound with highest score:

Uranium.

Score = 18 For Toxicity/Persistence (Reference 5, page 18;
Reference 6, page 3445)

Hazardous Waste Quantity

Total quantity of hazardous substances at the facility, excluding those with a containment score of 0 (Give a reasonable estimate even if quantity is above maximum):

The original amount of radioactive material was 8700 tons of barium sulfate sludge containing 7 tons of uranium ore processing waste. This was mixed with 39,000 tons of soil before being deposited in the landfill. (Reference 15, page 4) The material had been stored by Cotter Corporation under Nuclear Regulatory Commission license at 9200 Latty Avenue, Hazelwood, Missouri. This waste was originally reported to have been disposed at St. Louis County sanitary landfill area No. 1 (Reference 15, page 2) A subsequent NRC investigation clarified that a total of over 43,000 tons of waste were removed from the Latty Avenue site and that htis material was dumped at the Westlake Landfill. (Reference 15, page 3)

Score = 8 for Hazardous Waste Quantity (Reference 5, page 19)

Basis of estimating and/or computing waste quantity:

The amount of radioactive material was known at the time of disposal, as described above. (Reference 15, page 4)

AFED 8/2/6/

5. TARGETS

Ground Water Use

Use(s) of aquifer(s) of concern within a 3-mile radius of the facility:

There are at least fifteen known private drinking water wells within three miles of the facility. Groundwater is being used as a drinking water source, for other domestic purposes and for irrigation. (Reference 1, page 6; Reference 7, map; Reference 12; Reference 13; Reference 20)

No municipal water from alternative unthreatened sources is presently available to these users. (Reference 14)

Score = 3 for Ground Water Use (Reference 5, page 24)

Distance to Nearest Well

Location of nearest well drawing from <u>aquifer of concern</u> or occupied building not served by a public water supply:

The nearest well is about 2500 feet from the facility. (Reference 20) Seventeen additional wells are within three miles of the facility. (Reference 7, map; Reference 12; Reference 13)

Distance to above well or building:

The nearest well is about 2500 feet from the facility. (Reference 20, map; Reference 9, map showing distance)

Score = 3 for Distance to Nearest Well (Reference 5, page 26)

Population Served by Groundwater Wells Within a 3-Mile Radius

Identified water-supply well(s) drawing from <u>aquifer(s)</u> of <u>concern</u> within a 3-mile radius and populations served by each:

At least fifteen wells provide drinking water. (Reference 12 identifies eleven homes and two businesses; Reference 7 shows two additional wells not documented in Reference 12) The human population estimated to be served is at least 57. (Homes and businesses identified by References 7 and 12 times 3.8)

RAEGO 8/1/89 Computation of land area irrigated by supply well(s) drawing from aquifer(s) of concern within a 3-mile radius, and conversion to population (1.5 people per acre):

At least 480 acres of cropland (rowcrops and produce) are irrigated from wells within the three mile radius. (Reference 13) The population equivalent is 720 people.

Total population served by groundwater within a 3-mile radius:

The population served by groundwater is at least 777.

Score = 2 for Population Served (Reference 5, page 27)

Score = 16 for Distance to Nearest Well/Population Served (Reference 5, page 25)

))

7

QHED 8/1/8/ MC

SURFACE WATER ROUTE

1. OBSERVED RELEASE

Contaminants detected in surface water at the facility or downhill from it (5 maximum):

None.

Score = 0 for Observed Release (Reference 5, page 29)

Rationale for attributing the contaminants to the facility:

Surface water was not sampled.

2. ROUTE CHARACTERISTICS

Facility Slope and Intervening Terrain

Average slope of facility in percent:

Radioactive gases have been detected in the atmosphere above the landfill. (Reference 3, page 17) Buried deposits extend in excess of 20 feet in depth from the highest point of detection. They are also present on the surface of the sideslope of the landfill where they are available for migration by overland flow. (Reference 3, page 42) The slope from the top of the landfill to the location where the subsurface radioactive deposit intersects the sideslope is about 20%. The top of the landfill slopes less than 1 percent. (Reference 10, page I-6)

Name/description of nearest downslope surface water:

An unnamed, permanently flowing tributary to the Missouri River drains the site. The tributary is located about 1000 feet west of the landfill. (Reference 9)

Average slope of terrain between facility and above-cited surface water body in percent:

The landfill slopes directly to drainage ditches, which discharge to the tributary. Average slope between lowest point of documented contamination on the landfill sideslope (elevation 460 feet) and the tributary is about 4 percent. The elevation of the surface water was determined to be 440 feet. (Reference 3, page 42; Reference 9; Reference 10, page I-6)

Score = 2 for Facility Slope and Intervening Terrain (Reference 5, page
31)

8

Is the facility located either totally or partially in surface water?

No. (Reference 9)

Is the facility completely surrounded by areas of higher elevation?

No. (Reference 9)

1-Year 24-Hour Rainfall in Inches

2.9" (Refeence 5, page 33)

Score = 2 for 1-Year 24-Hour Rainfall (Reference 5, page 32)

Distance to Nearest Downslope Surface Water

The landfill is about 1000 feet from the tributary and about 1.25 miles from the Missouri River. (Reference 9)

Score = 2 for Distance to Nearest Downslope Surface Water (Reference 5,
page 32)

Physical State of Waste

Radioactive gases have been detected above the landfill surface. (Reference 3, page 17) The buried radioactive material intersects the surface of the ladfill sideslope. (Reference 3, page 42) Radon is water soluble and is available to wash into surface waters from the landfill. (Reference 1, page 10)

Score = 3 for Physical State of Waste (Reference 5, page 16)

3. CONTAINMENT

Containment

Method(s) of waste or leachate containment evaluated:

Some of the radioactive contaminated soil is at or near the surface of the landfill. (Reference 1, page 5)

Method with highest score:

Landfill not covered and no diversion system present.

Score = 3 for Containment (Reference 5, page 35)

QARG 8/2/69 SUACT

4. WASTE CHARACTERISTICS

Toxicity and Persistence

Compound(s) evaluated

Uranium. Uranium is known to have been deposited at this site, and has been detected on the surface of the sideslope of the landfill (Reference 3, page 42).

Compound with highest score:

Uranium.

Score = 18 for Toxicity/Persistence (Reference 5, page 18;
Reference 6, page 3445)

Hazardous Waste Quantity

Total quantity of hazardous substances at the facility, excluding those with a containment score of 0 (Give a reasonable estimate even if quantity is above maximum):

The original amount of radioactive material was 8700 tons of barium sulfate sludge containing 7 tons of uranium ore processing waste. This was mixed with 39,000 tons of soil before being deposited in the landfill. (Reference 15, page 4) The material had been stored by Cotter Corporation under Nuclear Regulatory Commission license at 9200 Latty Avenue, Hazelwood, Missouri. This waste was originally reported to have been disposed at St. Louis County sanitary landfill area No. 1 (Reference 15, page 2) A subsequent NRC investigation clarified that a total of over 43,000 tons of waste were removed from the Latty Avenue site and that htis material was dumped at the Westlake Landfill. (Reference 15, page 3)

Score = 8 for Hazardous Waste Quantity (Reference 5, page 19)

Basis of estimating and/or computing waste quantity:

The amount of radioactive material was known at the time of disposal, as described above. (Reference 15, page 4)

Surface Water Use

TARGETS

Use(s) of surface water within 3 miles downstream of the hazardous substance:

The Missouri River has state-designated beneficial uses of irrigation, livestock and wildlife watering, protection of aquatic life, commercial fishing, boating, and drinking water, and industrial water supplies. (Reference 4, page 57) No beneficial uses are specifically designated for

10

the permanently flowing tributary of the Missouri River that drains the landfill area. (Reference 4) No water supply intake is located within 3 miles downstream of the hazardous substance.

Score = 2 for Surface Water Use (Reference 5, page 34)

Is there tidal influence?

No. (Reference 9)

Distance to a Sensitive Environment

Distance to 5-acre (minimum) coastal wetland, if 2 miles or less:

NA (Reference 9)

Distance to 5-acre (minimum) fresh-water wetland, if 1 mile or less:

Areas of freshwater wetlands may be present within one mile of the facility. (Reference 9)

Distance to critical habitat of an endangered species or national wildlife refuge, if 1 mile or less:

NA

Score = 0 for Distance to a Sensitive Environment (Reference 5, page 37)

Population Served by Surface Water

Location(s) of water-supply intake(s) within 3 miles (free-flowing bodies) or 1 mile (static water bodies) downstream of the hazardous substance and population served by each intake:

None.

Score = 0 for Population Served/Distance to Water Intake Downstream (Reference 5, page 38)

Computation of land area irrigated by above-cited intake(s) and conversion to population (1.5 people per acre):

There is no known irrigation from the permanently flowing stream which drains the landfill area.

Total population served:

NA

Name/description of nearest of above water bodies:

NΑ

Distance to above-cited intakes, measured in stream miles.

NA

PAFG 8/2/89 WKT

Not Scored

1.	OBSERVE	ו זקס ח	77 CT
		<i>-</i> Niii	تالمدات

Contaminants detected:

Date and location of detection of contaminants

Methods used to detect the contaminants:

Rationale for attributing the contaminants to the site:

2. WASTE CHARACTERISTICS

Reactivity and Incompatibility

Most reactive compound:

Most incompatible pair of compounds:

2 Acd 8/2/89 WKT

Toxicity

Most toxic compound:

Hazardous Waste Quantity

Total quantity of hazardous waste:

Basis of estimating and/or computing waste quantity:

3. TARGETS

Population Within 4-Mile Radius

Circle radius used, give population, and indicate how determined:

0 to 4 mi

0 to 1 mi

0 to 1/2 mi 0 to 1/4 mi

CAFO 6/2/89

Distance to a Sensitive Environment

Distance to 5-acre (minimum) coastal wetland, if 2 miles or less:

Distance to 5-acre (minimum) fresh-water wetland, if 1 mile or less:

14

Distance to critical habitat of an endangered species, if 1 mile or less:

Land Use

Distance to commercial/industrial area, if 1 mile or less:

Distance to national or state park, forest, or wildlife reserve, if 2 miles or less:

Distance to residential area, if 2 miles or less:

Distance to agricultural land in production within past 5 years, if 1 mile or less:

Distance to prime agricultural land in production within past 5 years, if 2 miles or less:

Is a historic or landmark site (National Register or Historic Places and National Natural Landmarks) within the view of the site?

FIRE AND EXPLOSION

Not Scored

A score for the fire and explosion hazard mode has not been computed. Neither a state or local fire marshal has certified that the facility presents a significant fire or explosion threat to the public or to sensitive environments. Field observations have not demonstrated a fire or explosion threat.

1. CONTAINMENT

Hazardous substances present:

Type of containment, if applicable:

2. WASTE CHARACTERISTICS

Direct Evidence

Type of instrument and measurements:

Ignitability

Compound used:

Reactivity

Most reactive compound:

Incompatibility

Most incompatible pair of compounds:

QAC9 8/2/89 WAC7

DIRECT CONTACT

Not Scored

ORSERVED	

Date, location, and pertinent details of incident:

* * *

2. ACCESSIBILITY

Describe type of barrier(s)

* * *

3. CONTAINMENT

Type of containment, if applicable:

* * *

4. WASTE CHARACTERISTICS

Toxicity

Compounds evaluated:

Compound with highest score:

* *

WAE9 8/2/89 WACT

REFERENCES

If the entire reference is not available for public review in the EPA regional files on this site, indicate where the reference may be found:

Reference Number	Description of the Reference
1.	U. S. Nuclear Regulatory Commission, Radioactive Material in the West Lake Landfill, Summary Report, NUREG-1308, Rev.1, June 1988.
2.	U.S. Department of Agriculture, Soil Conservation Service, <u>Soil</u> <u>Survey of St. Louis County and St, Louis City, Missouri</u> , May 1982.
3.	Radiation Management Corporation, Radiological Survey of the West Lake Landfill, St. Louis County, Missouri, NUREG/CR-2722, U.S. Nuclear Regulatory Commission, May 1982.
4.	Missouri Code of State Regulations, Rules of the Clean Water Commission, Chapter 7, Water Quality Standards, 10 CSR 20-7.031.
5.	U.S. Environmental Protection Agency, <u>Uncontrolled Hazardous Waste</u> Site Ranking System - A User's Manual, 1984.
6.	Sax, N. Irving and Lewis, J., Sr., <u>Dangerous Properties of</u> <u>Industrial Materials</u> , Seventh Edition. Van Nostrand Reinhold, New York. 1989.
7.	Scott A. Meierotto letter to West Lake Quarry with map attachment, dated January 14, 1982.
8.	Roy D. Blunt, Missouri Secretary of State, Official Manual State of Missouri 1987-1988.
9.	U.S. Geological Survey, St. Charles, Missouri; 7.5 minute quadrangle map, revised 1974.
10.	Burns & McDonnell, <u>Hydrogeologic Investigation West Lake Landfill</u> <u>Primary Phase Report</u> , October 1986.
11.	EPA Forms 8900-1, <u>Notification of Hazardous Waste Site</u> , filed by various waste haulers who deposited solid waste in Westlake Landfill.
12.	Mike Struckhoff, Memo to John Madras, dated June 30, 1989.
13.	John Madras, Memo to Westlake Quarry Landfill File, dated July 14, 1989.
14.	Record of phone conversation between Dave Pruitt, St. Louis County Water Co., and John Madras, dated June 6, 1989.

18

QHED C/2/89 WAC7

REFERENCES (Continued)

Reference Number	Description of the Reference
15.	U. S. Nuclear Regulatory Commission, <u>IE Investigation Report No.</u> 76-01, dated January 5, 1977.
16.	Record of phone conversation between Clayton Weaver, Oak Ridge Associated Universities and John Madras, dated July 18, 1989.
17.	Janese Neher, Memo to Miles H. Stotts, dated June 16, 1989.
18.	Division of Geology and Land Survey, Well Logs of the Missouri River Floodplain of St. Louis County north of Route 115.
19.	Record of phone conversation between John Meadows and Lynn Hartman, and John Madras dated July 26, 1989.
20.	Record of phone conversation between Mike Struckhoff and John Madras, dated July 26, 1989.

National Priorities List

Superfund hazardous waste site listed under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) as amended in 1986

WESTIAKE LANDFILL Bridgeton, Missouri

Westlake Landfill covers 200 acres in Bridgeton, St. Louis County, Missouri, about 16 miles northwest of downtown St. Louis. The area is adjacent to prime agricultural land and is in the floodplain of the Missouri River. Between 1939 and the spring of 1987, limestone was quarried on the site. Starting in 1962, portions of the property were used for landfilling of solid and liquid industrial wastes, municipal refuse, and construction debris. In 1973, Cotter Corp. disposed of over 43,000 tons of uranium ore processing residues and soil in two areas covering a total of 16 acres of the Westlake Landfill, according to a Nuclear Regulatory Commission (NRC) report published in 1977.

In 1976, the Missouri Department of Natural Resources (MDNR) closed the unregulated landfill. Since then, MDNR has issued several permits for various portions of the 200-acre site. Currently, an operating sanitary landfill has a permitted area of 52 areas, and an operating demolition landfill has a permitted area of 22 acres.

Uranium was detected in on-site monitoring wells in tests conducted in 1985 and 1986 by a consultant to the owner of the landfill. An estimated 60 people obtain drinking water from private wells within 3 miles of the site.

Facility name:	Westlake Landfill						
Location.	St. Charles Rock Rd.						
EPA Region	VII						
Person(s) in cha	rge of the facility:						
Name of Review	Lyle Crocker Date: 8-30-83						
General descript (For example: li	non of the facility: andfill, surface impoundment, pile, container; types of hazardous substances; location of the lation route of major concern; types of information needed for rating; agency action, etc.)						
·	ite is an active permitted landfill. In the past.						
	11 accepted off-spec pesticides; waste solvents and						
low-le	vel radioactives. No determination has been made						
concer	ning the migration of wastes from the site.						
Scores: S _M = 4 S _{FE} =	.46(S _{gw} = 4.08 S _{sw} = 6.54S _a = 0,)						
S _{DC} =							

FIGURE 1
HRS COVER SHEET

	Ground Water Route Work Sheet								
	Rating Factor		Assigned Value . (Circle One)	Multi- plier	Score	Max. Score	Ref (Section)		
0	Observed Release	•	(0) 45	1.	0	45	3.1		
			n a score of 45, proceed to line 4 n a score of 0, proceed to line 2						
2	Route Characteris Depth to Aquifer Concern		0 1 ② 3	2	4	6	3.2		
	Net Precipitation Permeability of t Unsaturated Zo	he	0 D 2 3 0 1 Ø 3	1 1	2	3 3			
	Physical State		0 1 2 ③	1	3	3			
L			Total Route Characteristics Score		10	15			
3	Containment		0 1 2 🕱	1	3	3	3.3		
4	Waste Characteris Toxicity/Persiste Hazardous Wast Quantity	ence	0 3 6 9 12 15 (B) 0 1 2 3 4 5 6 7 (B)) 1	18 8	18 8	3.4		
			Total Waste Characteristics Score		26	26			
5	Targets Ground Water U Distance to Nea Well/Population Served	rest	0 ① 2 3 ⑥ 4 6 8 10 12 16 18 20 24 30 32 35 40	3	3	9 40	3.5		
	·		Total Targets Score		3	49			
6		multiply fultiply			2340	57.330			
7	Divide line 6 b	y 57,330	and multiply by 100	Sgw-	408				

FIGURE 2
GROUND WATER ROUTE WORK SHEET

Containment				Surface	Water	Route	Work Shee			<u> </u>	· · · · · · · · · · · · · · · · · · ·
If observed release is given a value of 45, proceed to line	Rating Factor						Score	1	Ref. (Section)		
### Total Waste Characteristics Surface ### Total Waste Characteristics #### Total Waste Characteristics #### Total Waste Characteristics Score #### Total Waste Characteristics Score #### Total Waste Characteristics Score ### ### ### ### #### #### #### ####	1	Observed Release	•	0		45		1	0	45	4.1
Facility Slope and Intervening											
Total Route Characteristics Score 26 26	2				:			, ,			4.2
Distance to Nearest Surface 0		Terrain			_			1	•	. 3	
Total Route Characteristics Score 9 15		Distance to Nea						-	2 2		
3 Containment 0 1 2 3 1 3 3 4.3		- · · - · · -		0	1 2	②		1	3	3	
Waste Characteristics				Total Rout	e Char	acterist	ics Score		9	15	
Toxicity/Persistence 0 3 6 9 12 15 18 1 78 18 Hazardous Waste 0 1 2 3 4 5 6 7 (8) 1 8 8 Quantity Total Waste Characteristics Score 26 26 Targets Surface Water Use 0 1 2 3 3 6 9 Distance to a Sensitive 0 1 2 3 2 0 6 Environment Population Served/Distance 10 4 6 8 10 1 0 40 to Water Intake Downstream 12 16 18 20 Total Targets Score 6 55	3	Containment		0	1 2 (3		1	3	3	4.3
Targets Surface Water Use 0 1 2 3 3 6 9	4	Toxicity/Persiste Hazardous Wast	ence						18 8		4.4
Surface Water Use									t		
Surface Water Use 0 1 2 3 3 6 9 Distance to a Sensitive 0 1 2 3 2 0 6 Environment Population Served/Distance 10 4 6 8 10 1 0 40 to Water Intake 12 16 18 20 Downstream 24 30 32 35 40 Total Targets Score 6 55				Total Wast	e Char	acteris	ics Score		26	26	
Distance to a Sensitive	3	Targets									4.5
Population Served/Distance to Water Intake Downstream 0 4 8 8 10 1 0 40 12 16 18 20 24 30 32 35 40 10 40		Distance to a Se		©	1 (2) 3				_	
Total Targets Score 6 55		Population Serve		ce 0				1	. 0	40	
		Downstream			30 3	2 35	40	÷4.40			
6 If line 1 is 45, multiply 1 x 4 x 5				Tota	l Targ	ets Sco	re		6	55	
If line 1 is 0, multiply 2 x 3 x 4 x 5 4212 64,350	_		_			x 5			4212	64,350	
Divide line 6 by 64,350 and multiply by 100 S _{3w} = 6.54	7	Divide line 6 b	y 64,350 a	and multiply	/ by 10	00		S _{Sw} -	6.54	}	

FIGURE 7
SURFACE WATER ROUTE WORK SHEET

		Air Ro	oute Work Sheet				
	Rating Factor	Assigned Value (Circle One)			Score	Max. Score	Ref (Section)
0	Observed Release	@	45	1	0	45	5.1
	Date and Location:						
	Sampling Protocol:						
	==	e S _a = 0. Enter on line hen proceed to line 2					
2	Waste Characteristi			_			5.2
	Reactivity and Incompatibility	0 1	2. 3	1		3	
	Toxicity Hazardous Waste Quantity	0 1 3	2 3 2 3 4 5 6 7	3 8 1		9 8	
		: * *	· · · · · ·				
	·	Total Waste C	haracteristics Score		n/a	20	
3	Targets						5.3
	Population Within 4-Mile Radius	0 9 1; 1 21 24 2	2 15 18 7 30	1		30	
	Distance to Sensit Environment	ive 0 1	2 3	2		6	
	Land Use	0.1	2 3	1		3	
		Total Ta	argets Score		n/a	39	
4	Multiply 1 x 2	x 3			0	35,100	
5	Divide line 4 by	35,100 and multiply by	100	s	0		

FIGURE 9
AIR ROUTE WORK SHEET

	s	s ²
Groundwater Route Score (Sgw)	4.08	16.65
Surface Water Route Score (S _{Sw})	6.54	42.77
Air Route Score (Sa)	0	0
S _{gw} + S _{sw} + S _a		59.42
$\sqrt{s_{gw}^2 + s_{sw}^2 + s_a^2}$		7.71
$\sqrt{s_{gw}^2 + s_{sw}^2 + s_a^2} / 1.73 = s_M =$		4.46

FIGURE 10 WORKSHEET FOR COMPUTING S_M

		Fire and	Explosion Work Shee	1			
	Rating Factor Assigned Value Multi- (Circle One) Piler				Score	Max. Score	Ref (Sert.on)
o	Containment	0	3	. 1	1	3	7 1
2	Waste Characteristic Direct Evidence Ignitability Reactivity Incompatibility Hazardous Waste Quantity	0 0 1 0 0 0 0	3 ② 3 2 3 2 3 2 3 4 5 6 7 (6	1 1 1	0 2 1 1 8	3 3 3 3 8	7.2
		Total Waste	Characteristics Score		12	20	
3	Targets Distance to Nearest	0 ①	2 3 4 5	1	1	5	7.3
	Population Distance to Nearest	0 1	② 3	1	2	3	
	Building Distance to Sensitive Environment	(0 1	2 3	. 1	0	3	
	Land Use Population Within 2-Mile Radius	0 1 0 1	② 3 2 3 4 ⑤	1	2 5	3 5	
	Buildings Within 2-Mile Radius	0 1	2 3 4 (5)	1	5	5	
	Γ	Total '	Targets Score	·	15	24	
4	Multiply 1 x 2	x 3			180	1,440	
3	Divide line 4 by 1	,440 and multiply by	y 100	SFE -	12.	50	

FIGURE 11
FIRE AND EXPLOSION WORK SHEET

		Direct Contact Work Sheet	t			
	Rating Factor	Assigned Value (Circle One)	Multi- plier	Score	Max. Score	Ref. (Section)
0	Observed Incident	() 45	1	0	45	8.1
	If time 1 is 45, proceed If line 1 is 0, proceed I	<u> </u>				
2	Accessibility	0 1 2 3	1	2	3	8.2
1	Containment	6 15	1	0	15	8.3
•	Waste Characteristics Toxicity	0 1 2 🕤	5	15	15	8.4
3	Targets Population Within a 1-Mile Radius Distance to a Critical Habitat	0 1 2 3 4 5	4		20 12	8.5
	Citical Habitat					
		Total Targets Score		n/a	32	
	If line 1 is 45, multiply If line 1 is 0, multiply	1		0	21,600	
7	Divide line 6 by 21,600	and multiply by 100	SDC -	0		

FIGURE 12 DIRECT CONTACT WORK SHEET

DOCUMENTATION RECORDS FOR HAZARD RANKING SYSTEM

INSTRUCTIONS: The purpose of these records is to provide a convenient way to prepare an auditable record of the data and documentation used to apply the Hazard Ranking System to a given facility. As briefly as possible summarize the information you used to assign the score for each factor (e.g., "Waste quantity = 4,230 drums plus 800 cubic yards of sludges"). The source of information should be provided for each entry and should be a bibliographic-type reference that will make the document used for a given data point easier to find. Include the location of the document and consider appending a copy of the relevant page(s) for ease in review.

FACILITY NAME:	 	
LOCATION:		

GROUND WATER ROUTE

1 OBSERVED RELEASE

Contaminants detected (5 maximum):

None

Rationale for attributing the contaminants to the facility:

n/a

* * *

2 ROUTE CHARACTERISTICS

Depth to Aquifer of Concern

Name/description of aquifers(s) of concern:

shallow alluvium of Missouri River

Depth(s) from the ground surface to the highest seasonal level of the saturated zone [water table(s)] of the aquifer of concern:

approximately 60 ft.

Depth from the ground surface to the lowest point of waste disposal/ storage: approximately 35 feet

Net Precipitation

Mean annual or seasonal precipitation (list months for seasonal):

approximately 36"

Mean annual lake or seasonal evaporation (list months for seasonal):

approximately 35"

Net precipitation (subtract the above figures):

+1"

Permeability of Unsaturated Zone

Soil type in unsaturated zone:

silty sands over limestone

Permeability associated with soil type:

approximately 10 -3 to 10 -5 cm/sec.

Physical State

Physical state of substances at time of disposal (or at present time for generated gases):

liquid

3 CONTAINMENT

Containment

Method(s) of waste or leachate containment evaluated:

Landfill; no liner; some ponding

Method with highest score:

above

4 WASTE CHARACTERISTICS

Toxicity and Persistence

Compound(s) evaluated:

Chlordane TCE Toluene

Compound with highest score:

Chlordane

Hazardous Waste Quantity

Total quantity of hazardous substances at the facility, excluding those with a containment score of 0 (Give a reasonable estimate even if quantity is above maximum):

4000 tons Pesticides 7000 tons Low-level uranium Undetermined amounts of waste solvents

Basis of estimating and/or computing waste quantity:

"Superfund Notifications"
Interviews and Company records

5 TARGETS

Ground Water Use

Use(s) of aquifer(s) of concern within a 3-mile radius of the facility:

Commercial with municipal water available

Distance to Nearest Well

Location of nearest well drawing from aquifer of concern or occupied building not served by a public water supply:

Not used for drinking water

Distance to above well or building:

n/a

Population Served by Ground Water Wells Within a 3-Mile Radius

Identified water-supply well(s) drawing from aquifer(s) of concern within a 3-mile radius and populations served by each:

n/a

Computation of land area irrigated by supply well(s) drawing from aquifer(s) of concern within a 3-mile radius, and conversion to population (1.5 people per acre):

n/a

Total population served by ground water within a 3-mile radius:

None

SURFACE WATER ROUTE

1 OBSERVED RELEASE

Contaminants detected in surface water at the facility or downhill from it (5 maximum):

None-

Rationale for attributing the contaminants to the facility:

n/a

2 ROUTE CHARACTERISTICS

Pacility Slope and Intervening Terrain

Average slope of facility in percent:

greater than 8% slope

Name/description of nearest downslope surface water:

Missouri River

Average slope of terrain between facility and above-cited surface water body in percent:

between 3 and 5% slope

Is the facility located either totally or partially in surface water?

No

Is the facility completely surrounded by areas of higher elevation?

No

1-Year 24-Hour Rainfall in Inches

between 2.5-30 inches

Distance to Nearest Downslope Surface Water

between 1 and 2 miles

Physical State of Waste

liquids

3 CONTAINMENT

Containment

Method(s) of waste or leachate containment evaluated:

Landfill, diversion system unsound

Method with highest score:

above

4 WASTE CHARACTERISTICS

Toxicity and Persistence

Compound(s) evaluated

See groundwater

Compound with highest score:
see groundwater

Hazardous Waste Quantity

Total quantity of hazardous substances at the facility, excluding those with a containment score of 0 (Give a reasonable estimate even if quantity is above maximum):

see groundwater

Basis of estimating and/or computing waste quantity:

see groundwater

5 TARGETS

Surface Water Use

Use(s) of surface water within 3 miles downstream of the hazardous substance:

Recreation

Is there tidal influence?

No

Distance to a Sensitive Environment

Distance to 5-acre (minimum) coastal wetland, if 2 miles or less:

n/a

Distance to 5-acre (minimum) fresh-water wetland, if I mile or less:

n/a

Distance to critical habitat of an endangered species or national wildlife refuge, if I mile or less:

n/a

Population Served by Surface Water

Location(s) of water-supply intake(s) within 3 miles (free-flowing bodies) or 1 mile (static water bodies) downstream of the hazardous substance and population served by each intake:

None

Computation of land area irrigated by above-cited intake(s) and conversion to population (1.5 people per acre):

n/a

Total population served:

None

Name/description of nearest of above water bodies:

Missouri River

Distance to above-cited intakes, measured in stream miles.

None	÷	:				
				•		
ate and locat	ion of detect	ion of con	taminants	•		
n/a			•			
٠.				. %		
ethods used t	o detect the	contaminan	ts:	•		
n/a	•					
					·	٠.

2 WASTE CHARACTERISTICS

Reactivity and Incompatibility

Most reactive compound:

n/a

Most incompatible pair of compounds:

Toxicity

Most toxic compound:

n/a

Hazardous Waste Quantity

Total quantity of hazardous waste:

n/a

Basis of estimating and/or computing waste quantity:

·n/a

3 TARGETS

Population Within 4-Mile Radius

Circle radius used, give population, and indicate how determined:

0 to 4 mi

0 to 1 mi

0 to 1/2 mi

0 to 1/4 mi

n/a

Distance to a Sensitive Environment

Distance to 5-acre (minimum) coastal wetland, if 2 miles or less:

n/a

Distance to 5-acre (minimum) fresh-water wetland, if I mile or less:

Distance to critical habitat of an endangered species, if I mile or less:

n/a

Land Use

Distance to commercial/industrial area, if I mile or less:

n/a

Distance to national or state park, forest, or wildlife reserve, if 2 miles or less:

n/a

Distance to residential area, if 2 miles or less:

n/a

Distance to agricultural land in production within past 5 years, if l mile or less:

n/a

Distance to prime agricultural land in production within past 5 years, if 2 miles or less:

n/a

Is a historic or landmark site (National Register or Bistoric Places and National Natural Landmarks) within the view of the site?